Approche hybride IA/CFD pour la simulation des impacts de gouttes lors des procédés de projection thermique
J-25
Doctorat Doctorat complet
Sciences pour l'Ingénieur
Nouvelle-Aquitaine
- Disciplines
- Autre (Sciences pour l'Ingénieur)
- Laboratoire
- USR 5295 I2M - Institut de Mécanique et d'Ingénierie de Bordeaux
- Institution d'accueil
- Université de Bordeaux
Description
Suspension Plasma Spraying (SPS) is an emerging industrial process, particularly for the creation of ceramic coatings resistant to thermomechanical stresses, used as long-life thermal barriers for aircraft engine. For the aeronautics industry, it is classified as a special process whose output elements can only be verified by monitoring or post-measurement, and whose deficiencies therefore only become apparent once the product is in use. In this process, the liquid suspension containing the submicron particles of the material to be deposited is injected into a thermal plasma jet to be fragmented and evaporated, releasing individual or agglomerated submicron particles that are then accelerated and melted and will impact and spread over the part to be coated to form a coating. The structure of the coating is a function of the operating conditions, from the plasma torch to the droplet impact conditions (shape, velocity, temperature, and substrate roughness). A dense or columnar structure may occur, which influences the final thermomechanical properties of the material. A full CFD simulation of the entire process is beyond reach due to limitations in the number of particles that can be simulated. Therefore, we propose a three-step approach, consisting of CFD simulations at the droplet scale combined with a stochastic approach [1] enriched by AI at the coating scale: The stochastic approach aims to represent realistic spray conditions (spatial, temporal, radius, velocity, and temperature distributions of the particles).
Simulations of droplet impacts using the CFD code Notus [2] aim to populate a database representing the topology of various instantaneous representative sprayed surfaces.
A neural network-based on CFD results aims to surpass CFD simulations capacity by representing large impact surfaces and amounts of particles. The AI tool's results can be verified and refined through additional CFD simulations.
Compétences requises
Python, Fortran, AI, Computational Fluid Mechanics.Bibliographie
[1] M. Xue et al 2008, A stochastic coating model to predit the microstructure of plasma sparyed zirconia coatings, Modelling Simul. Mater. Sci. Eng., 16 065006.[2] Notus CFD code : https://notus-cfd.org
[3] Jingzu Yee, Daichi Igarashi, Shun Miyatake and Yoshiyuki Tagawa, Prediction of the morphological evolution of a splashing drop using an encoderdecoder, Machine Learning Science and Technology, 2023.
[4] M. Giselle Fernández‐Godino, Donald D. Lucas & Qingkai Kong Predicting wind‐driven spatial deposition through simulated color images using deep autoencoders. Scientific Reports, 2023
[5] Morgane Suhas, Modèles de comportement et loi de défaillance de systèmes enrichis par les données, thèse de lÉcole doctorale Sciences des métiers de l'ingénieur de lENSAM, 2025.
Mots clés
IA, Mécanique des fluides, Gouttes, Revêtement, SimulationOffre financée
- Type de financement
- ANR
Dates
Date limite de candidature 30/11/25
Durée36 mois
Date de démarrage01/01/26
Date de création23/09/25
Langues
Niveau de français requisAucun
Niveau d'anglais requisAucun
Divers
Frais de scolarité annuels400 € / an
Contacts
Vous devez vous connecter pour voir ces informations.
Cliquez ici pour vous connecter ou vous inscrire (c'est gratuit !)
